1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
| import tensorflow as tf from tensorflow.keras import layers,models import matplotlib.pyplot as plt
cifar10 = tf.keras.datasets.cifar10 (train_images,train_labels),(test_images,test_labels) = cifar10.load_data()
train_images = train_images.astype('float32')/255 test_images = test_images.astype('float32')/255
train_images_nn = train_images.reshape((50000,32*32*3)) test_images_nn = test_images.reshape((10000,32*32*3))
model_nn = models.Sequential([ layers.Dense(4096,activation='relu',input_shape=(32*32*3,)), #layers.Flatten(), #'leaky_relu' layers.Dense(2048,activation='relu'), layers.Dense(1024,activation='relu'), layers.Dense(512,activation='relu'), layers.Dense(256,activation='relu'), layers.Dense(128,activation='relu'), layers.Dense(64,activation='relu'), layers.Dense(10,activation='softmax'), ])
model_nn.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
history_nn = model_nn.fit(train_images_nn,train_labels,epochs=15,validation_data=(test_images_nn,test_labels))
|